English translation for reference purposes only

Non-cleaving CRISPR as A Novel Therapeutic Modality for Genetic Disorders

(TSE4883) Modalis therapeutics Corporation Corporate and Technology summary 08. 2020 MODALIS

is the Key

In case of any discrepancy, the Japanese version shall prevail

Disclaimer

This document has been prepared by Modalis Therapeutics corporation and Modalis Therapeutics Inc. (the "Companies") solely for information purpose only. This document does not constitute or form part of and should not be construed as, an offer to sell or issue or the solicitation of an offer to buy or acquire securities of the Companies in Japan, the United States or any other jurisdictions. The information contained herein is based on current economic, regulatory, market trends and other conditions. The Companies make no representation or guarantee with respect to the credibility, accuracy or completeness of the information herein. The information contained herein may change without prior notice. You may not publish or use this document and the contents thereof for any other purpose without a prior written consent of the Companies. Furthermore, the information on future business results are forward-looking statements. Forward-looking statements include but not limited to expressions such as "believe", "expect", "plan", "strategic", "expect", "anticipate", "predict" and "possibility", as well as other similar expressions to explain future business activities, achievements, events and future conditions. Forward-looking statements are predictions about the future that reflect management's judgment based on currently available information. As such, these forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from those expressed in or suggested by the forward-looking statements. Therefore, you may not rely entirely on forward-looking statements. The Companies do not assume any obligation to change or correct any forward-looking statements in light of new information, future events or other findings.

This document and its contents are confidential and are being provided to you solely for your information and may not be retransmitted. This presentation is being furnished to you solely for your information and may not be reproduced or redistributed to any other person. In giving this presentation, the Companies do not undertake any obligation to provide the recipient with access to any additional information or to update this presentation or any additional information or to correct any inaccuracies in any such information which may become apparent.

Information on companies other than the Companies and information provided from third parties are based on public information or sources. The Companies have not independently verified the accuracy and appropriateness of such data and indicators used herein, nor assume any responsibility for the accuracy and appropriateness of such data and indicators presented in this document.

MUDALIS

Table of contents

- 1. Corporate Overview
- 2. Financial Highlights
- 3. Our Features and Strong points
- 4. Business Model
- 5. Growth Strategy
- Appendix

Corporate Overview

Corporate Overview

Modalis Therapeutics is a biotech company to develop CRISPR-based gene therapies

Name	Modalis Therapeutics Corporation	Date	History
		Jan 2016	Founded in Tokyo as EdiGENE Corporation
Foundation	Jan 2016	Apr 2016	Established 100% owned US subsidiary EdiGENE Inc. (Now Modalis Therapeutics Inc.)
President CEO	Haru Morita	Apr 2017	Entered into research collaboration with Astellas Pharma Inc.
HQs	16-5 Nihonbashi-Kabuto-cho, Chuo—ku, Tokyo 103-0026 Japan	Dec 2017	Series A round from FUJIFILM Corporation and 8 other companies through third-party allotment
US subsidiary	Modalis Therapeutics Inc. (51 Moulton st. Cambridge MA)	Dec 2017	Expanded research collaboration with Astellas
	Drug Development	Jun 2018	Selected as a J-Startup program, an elite program funded by the Japanese government.
Business		Jan 2019	HQs moved to new facility
Common stock	13,000,000 thousand yen	Mar 2019	Established license agreement on a genetic disorder with Astellas Pharma Inc.
Capital Raised	41.1Billion Yen (~38.4 Million USD)	Mar 2019	Cambridge Lab moved to the new facility
Outstanding	25,100,000 common stock	Aug 2019	Company name changed to Modalis Therapeutics
share	(excluding 2,903,200 stock option units)	Sep 2019	Established 2 nd license agreement on a genetic disorder with Astellas Pharma Inc.
# of employee	17 (including 7 PhD) (4 in Japan, 13 in US) As of end May 2020	Nov 2019	Entered into research collaboration with Eisai Inc.
Award	J-STARTUP (2018)	Apr 2020	Entered into a license agreement with Editas Medicine , Inc to obtain access to foundational CRISPR IP.

Modalis' 6 strengths

In the right time, the right place, with the powerful technology and the best brightest

GTx and Gene Editing, the "next big thing"

- Expected Strong market growth after the dawn period
- Huge opportunities of **100s monogenic disorders**

Leading non-cleaving CRISPR company

- The precision of gene editing but even safer as it doesn't cut DNA
- unique IP position with access to CRISPR foundational IP

Diversified and scalable pipelines

- Solid discovery process and predictable clinical outcome
- 5 on-going collaboration pipelines with large pharma companies and 2 internal pipelines

Pharma Partnerships

- Collaboration with 3 multinational pharma companies
- Total milestone of the 2 out license programs worth >\$350M

Hybrid pipeline model

- Hybrid of earlier cash flow from collaboration pipeline and upside potential from Internal pipeline
- Came to ordinary profits positive in FY2019

Strong team

Combination of seasoned management and talented scientists from all over the world

Management Team and Board of Directors Seasoned team

Co-founder, President, CEO, and Chair of the board Haru Morita

- REGIMMUNE, Founder, President and CEO
- Y's Therapeutics, Booz Allen and Company, Kyowa-KIRIN

Board member, founding scientist Osamu Nureki Ph.D

- Professor, Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- Purple Ribbon medal (Shiju-Hou-shou)

svP, Chief Technology Officer Tetsuya Yamagata, M.D. Ph.D

- Glaxo Smith Kline, Tempero Pharmaceuticals
- Joslin Diabetes Center, Harvard Medical School

Board member Hideki Takeda

- President, Medical Patent Research
- Healios KK former president, Fujisawa (merged into Astellas)

VP, Chief Financial Officer Naoki Kobayashi, MBA

- Former CFO at Oncolysbiopharma, Hatena, and Argens
- Deloitte Tohmatsu, Daikyo Real estate

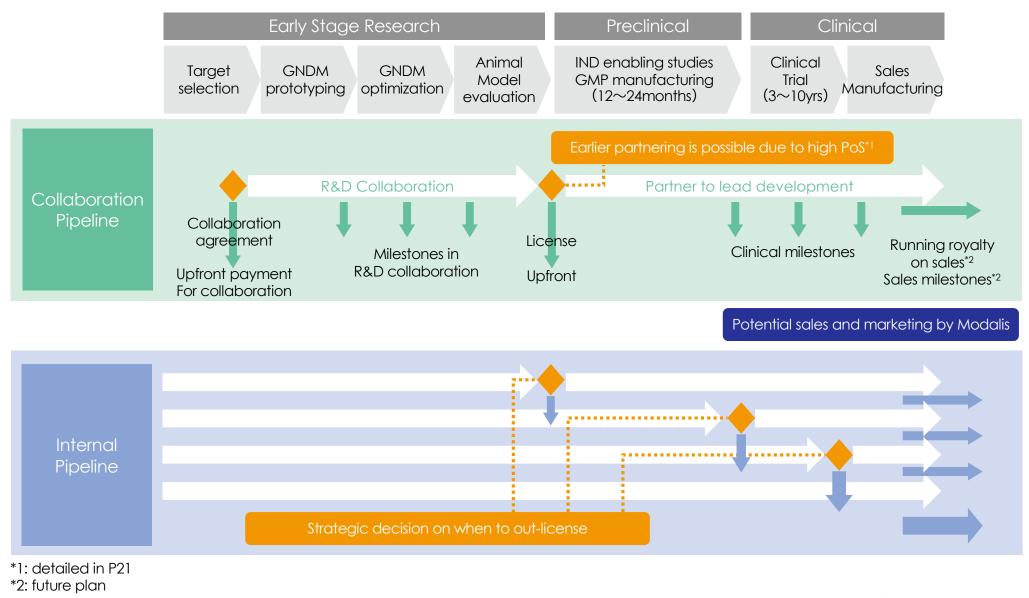
Board member Joseph S. McCracken, DVM

• Roche Head of Global license, Genentech, Sanofi

Board member, Audit committee Miyuki Shimane

• Chugai Pharma

Board member, Audit committee, CPA Teruhisa Tajima


- President Tajima CPA office
- Corporate Auditor (Quantum Biosystems, OncoTherapy, Prism Bioscience)

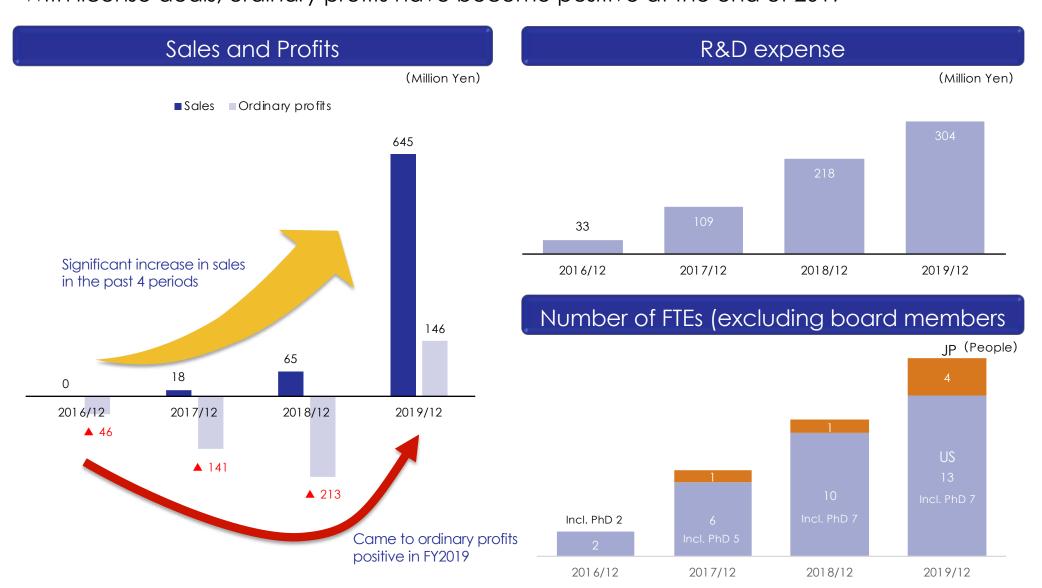
Board member, Audit committee, Attorney at Law Toshio Furuta

- Representing attorney, Clair Law Firm
- Corporate Auditor (NetYear Group, Canbas, Zenrin)

Business Model Hybrid of own pipeline and collaboration pipeline

Scalable pipeline

Code	Disease	Partner	Early Research	Preclinical		Clinic	al	
Code	/Indication*1	i dimer	Discovery Research	IND enabling	IND	PhI	Phll	PhIII
MDL-201	Muscle	Astellas Pharma Inc.			>\$350M Mile for the 2 lic			
MDL-202	Muscle	Astellas Pharma Inc.						
MDL-204	CNS	Astellas Pharma Inc.				Collabo	ration	
MDL-205	CNS	Eisai Co., Ltd.						
MDL-206	CNS	Astellas Pharma Inc.						
MDL-101	MDC1A*2	Fully controlled by Modalis		•		Interr	nal	
MDL-102	CNS	Fully controlled by Modalis						
Pipeline Expansion								


*1: We have adopted a strategy of withholding specific indications until the patent application is published for competitive reasons. *2: MDC1A=Merosin-deficient congenital muscular dystrophy type 1A

Financial Highlights

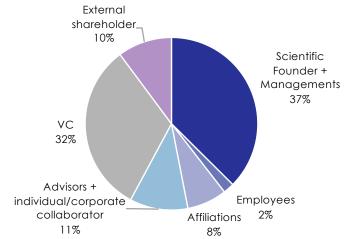
Sales, Profits, R&D expense and FTEs With license deals, ordinary profits have become positive at the end of 2019

* 2016 – 2017 are non-consolidated basis, after 2018 are consolidated basis

Financial Highlights

Stable financial base & shareholder composition

Consolidated B/S *1				
(Thousand Yen)	2018/12	2019/12	2020/12 1Q	
Total current assets	1,214,738	3,874,974	3,703,938	
Cash and cash equivalents	1,205,143	3,857,235	3,682,880	
Total intangible assets	757	48,954	51,763	
Investments and other assets	9,011	14,499	14,199	
Total assets	1,224,508	3,938,428	3,769,901	
Total Liabilities	22,728	95,885	45,446	
Common stock	50,000	1,300,000	1,300,000	
Capital surplus	1,371,735	2,621,735	2,621,735	
Retained earnings (Accumulated deficit)	▲ 219,640	▲ 79,112	▲ 197,398	
Total shareholders' equity	1,202,094	3,842,623	3,724,336	
Total net assets	1,201,779	3,842,542	3,724,455	
total liabilities and net assets	1,224,508	3,938,428	3,769,901	

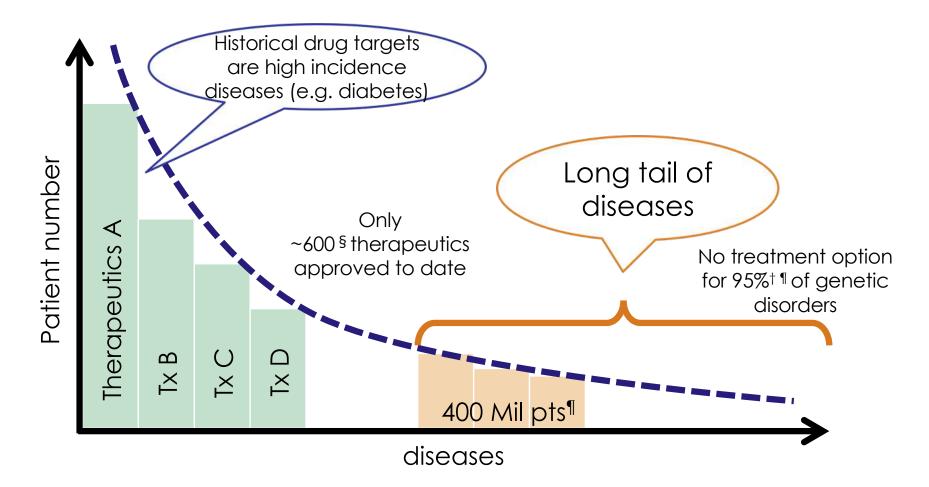

Consolidated P/L *1 (Thousand Yen) 2020/12 1Q 2019/12 2018/12 65,297 644,500 13,000 License revenue Total operating expenses 279,420 487,305 129,164 217,927 Research and development 303,680 81,317 61,493 183,625 47,846 Selling, general and administrative expenses Operating profits (or loss) ▲ 214,123 157,194 116,164 983 98 Non-operating income 1,119 250 11,962 Non-operating expenses 858 ▲ 213,390 146,351 116,924 Ordinary profits (or loss) ▲ 213,390 146,351 🔺 116,924 Profits (or Loss) before income taxes Total income taxes 5,823 1,362 4,518 Net profits (or loss) ▲ 217,909 140,528 118,286 Profits (or Loss) attributable to owners of parent **A** 217,909 140,528 118,286

*1: This is a translation of the original release in Japanese. In the event of any discrepancy, the original release in Japanese shall prevail.

VC 36% VC 36% Scientific Founder + Managements 42% Advisors + individual/corporate collaborator 12% Affiliations 8% Employees 2%

Shareholder composition Before IPO (Incl. Potential stocks)

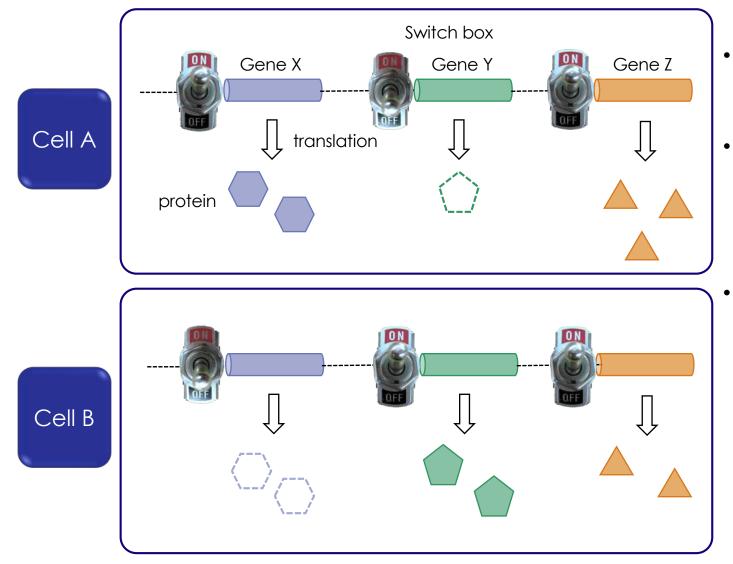
Shareholder composition After IPO (Incl. Potential stocks) *2


*2: Assumption after conducting public offering, sales, OA (upper limit) described in the prospectus

MUDALIS

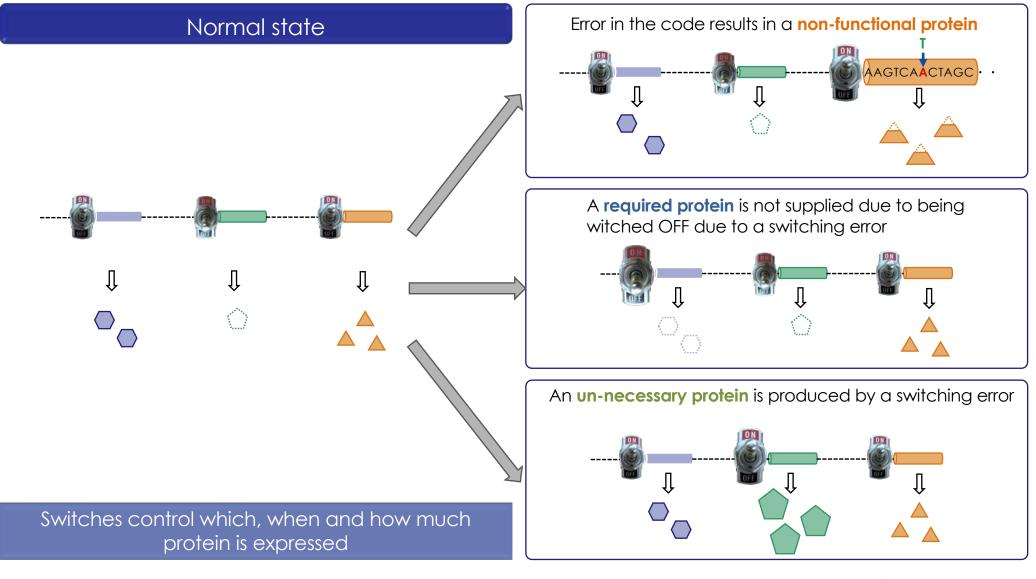
Our Features and Strong points

To target "long tail" of diseases, innovation is needed Among 10,000* human disorders ~7,000# are orphan disease and 80%[†] are genetic disorders


Scalable efficient approach is required to tackle the divided population

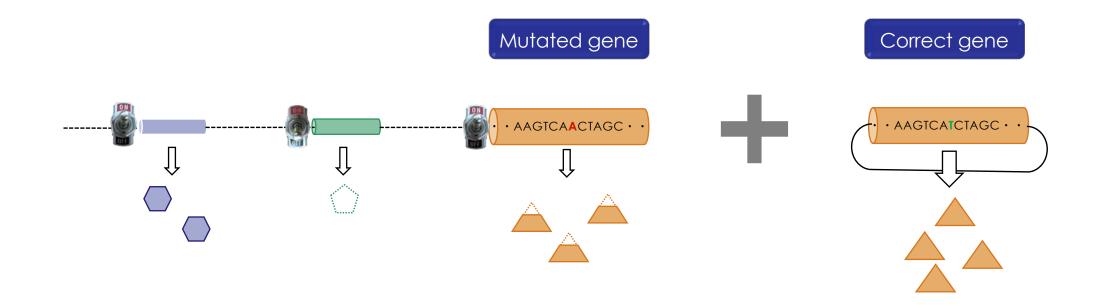
Source: *21st Century Cure Act, *NIH GARD †innovation.org "GlobalGenes.org

SActive therapeutics of 491 NME, 106 BLA, 17 cellular and gene therapy products @FDA as of 2019.7.22 Source from KEGG

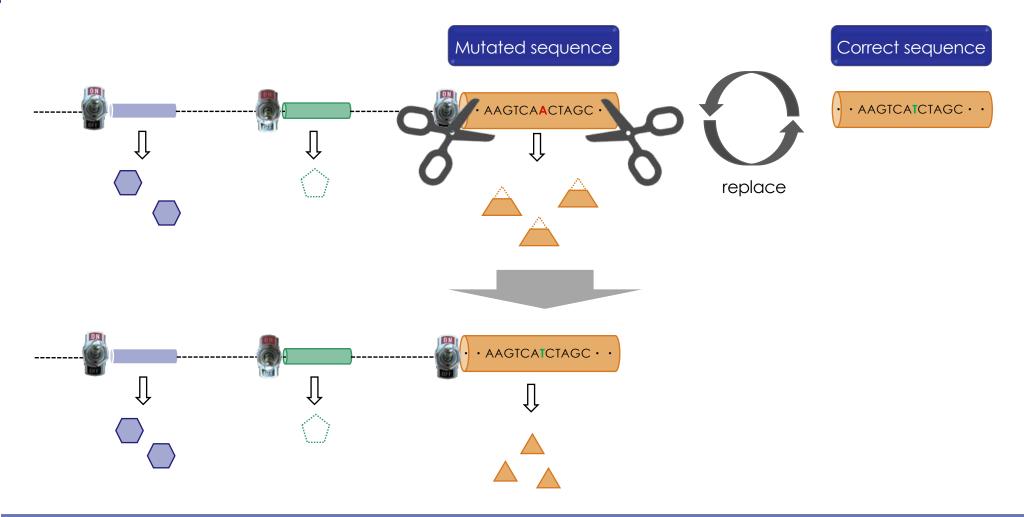

How multiple cell types are created from the same DNA code Each of 20,000 genes have ON/OFF switches that control cell type specific expression

- There are **37.2 Trillion cells** in our body
- 200 cell types in our body have the same DNA code despite differences in appearance and function
 - Differences in cell types and their states are controlled by ON / OFF switches of the expression of **20,000 genes** coded by **3 billion bases of DNA**

3 types of genetic disorders


An error in the code or in switching can cause disorders

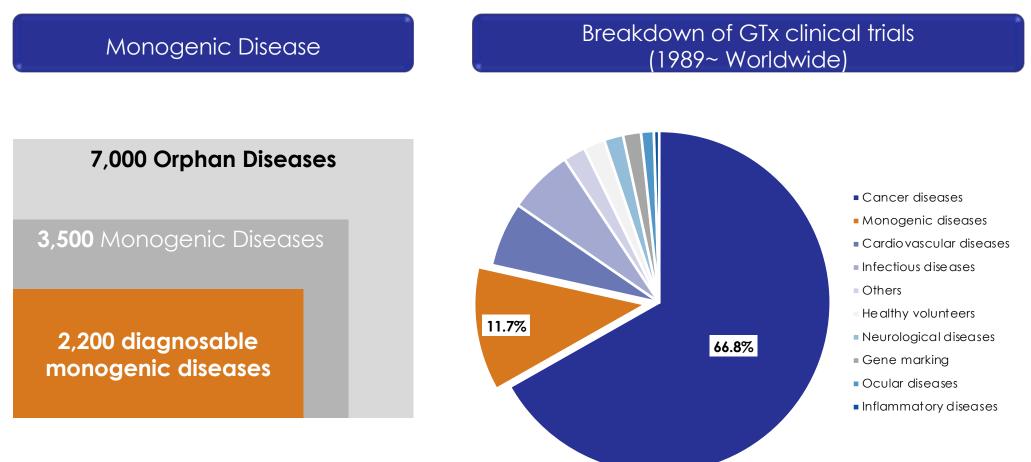
MUDALIS


Classical gene therapy

Replaces a mutated gene by inserting a correct gene exogenously

Overwrite of missing gene

Gene Editing Replaces mutated DNA with correct DNA by cleaving DNA

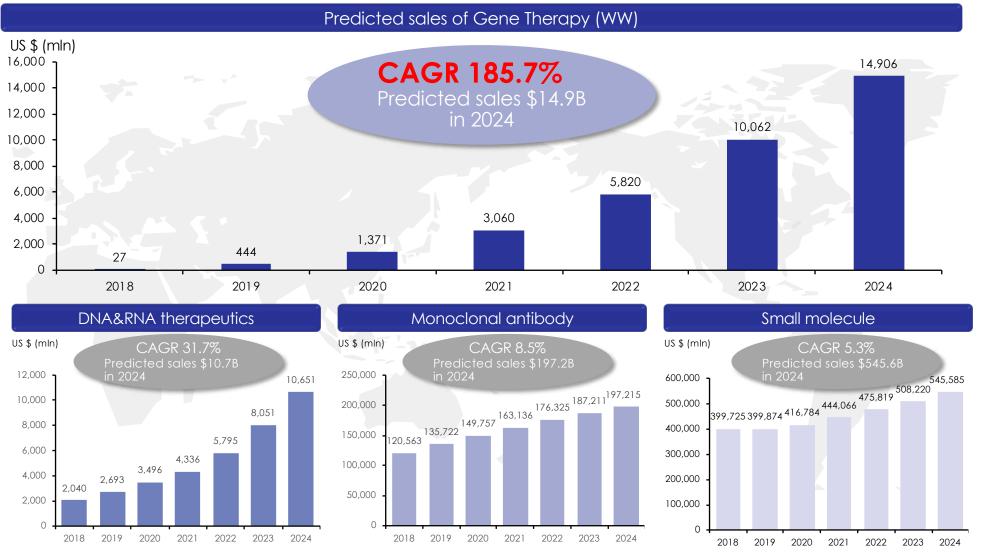

However, cleaving DNA increases risk of cancer

Monogenic Diseases Gene therapies for monogenic disorders are expected to have higher probability of success due to simplicity of mechanism

Our Features and Strong points : TAM

Untapped opportunities in monogenic disorders Limited number of drugs are approved or in clinical development for monogenic disorders

Source: Discovery Medicine


Source: The Journal of Gene Medicine (2019)

Major hurdles in drug development PoP and PoC are predictable in GNDM prior to human testing

Key milestones for small and large molecules				
		Standard DD	GTx CRISPR-GNDM	
Pharmacodynamic	Does the drug reach intended organ?	preclinica	preclinic	
Proof of Mechanism	Does the drug engage the intended target?	Ph.		
Proof of Principal	Does the drug have a pharmacological impact on the disease?	Phila	Predictable (still need	
Proof of Concept	Does it produce a clinically meaningful change in the disease?	Philb	Clinical trial, though)	

Source : Nature Biotechnology volume 30, p596–599 (2012)

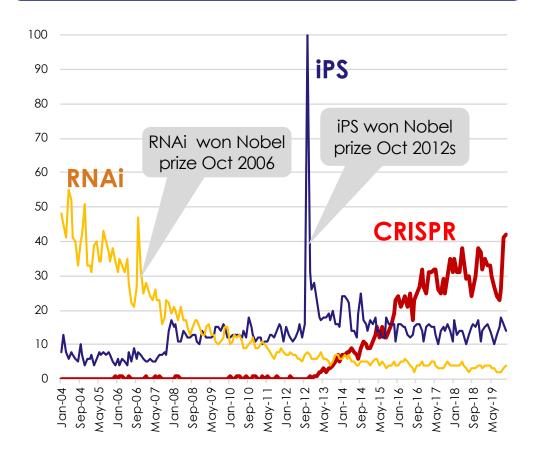
Sales growth of pharmaceutical modalities GTx is growing faster than other modalities

Source : Evaluate Ltd (in Aug 2019 data) *CAGR=2018 to 2024. 2019 to 2024 are predicted sales

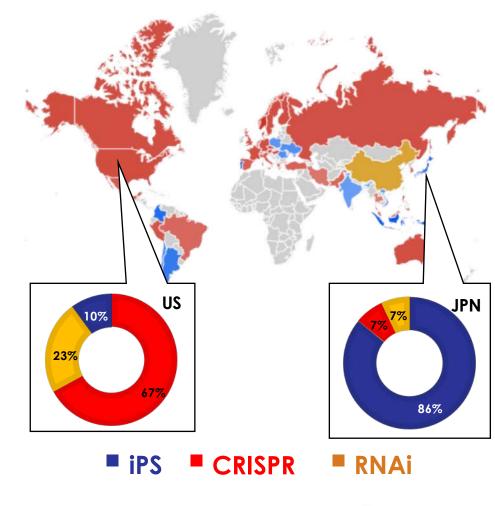
Examples of GTx companies M&A Acquisitions / investments in 2018-2019 deals ranged from millions to billions of US dollars

Name	Closing Date	Acquisition / investment	Deal total	Ref. (disclosed information by each company of GTx)
Astellas	2019/12	AUDENTES Tx	\$3.0 billion	AT132: X-linked myotubular myopathy (XLMTM) AT845: Pompe disease AT702, AT751, AT753: Duchenne muscular dystrophy (DMD)
VERTEX	2019/6	Exonics Tx	\$1.0 billion	Duchenne muscular dystrophy (DMD) myotonic dystrophy type 1 (DM1)
SAREPTA Tx	2019/3	Myonexus Tx	\$165 million	MYO-101: limb-girdle muscular dystrophy 2E (LGMD 2E) MYO-102: limb-girdle muscular dystrophy 2D (LGMD 2D)
Biogen	2019/3	Nightstar Tx	\$800 million	NSR-REP1: Choroid atrophy (Choroideremia) NSR-RPGR: X-linked retinitis pigmentosa (XLRP) NSR-ABCA4: Staggered disease
Roche	2019/2	Spark Tx	\$4.3 billion	SPK-9001: Hemophilia B SPK-8011, SPK-8016: Hemophilia A SPK-7001: Choroid atrophy (Choroideremia)
NOVARTIS	2018/5	AveXis	\$8.7 billion	Zorgensma AVXS-101 (IT) : Spinal muscular atrophy type II (SMA Type 2) AVXS-201: Rett syndrome (RTT) AVXS-301: Amyotrophic lateral sclerosis (ALS)

Source : disclosed information by each company



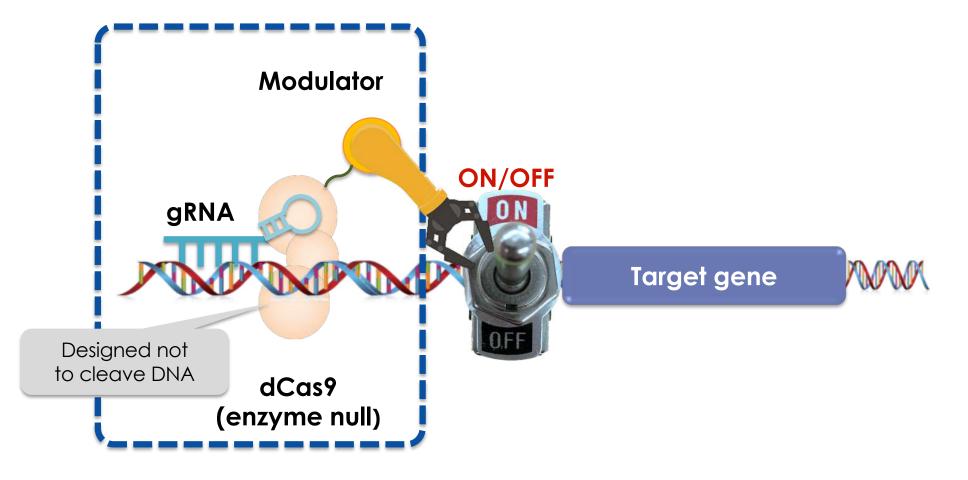
CRISPR is a novel gene editing technology Faster and higher throughput due to limited variable region which is easily synthesizable as gRNA



CRISPR gets more attention

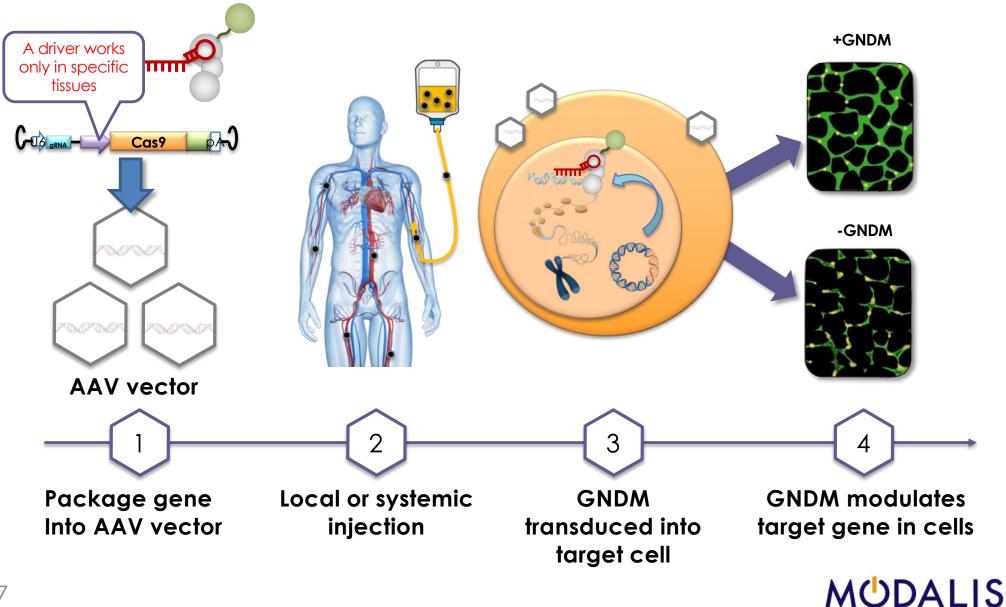
Trends in Google keyword searches (world wide)

Geographic distribution of key word Google search (2005-2015)

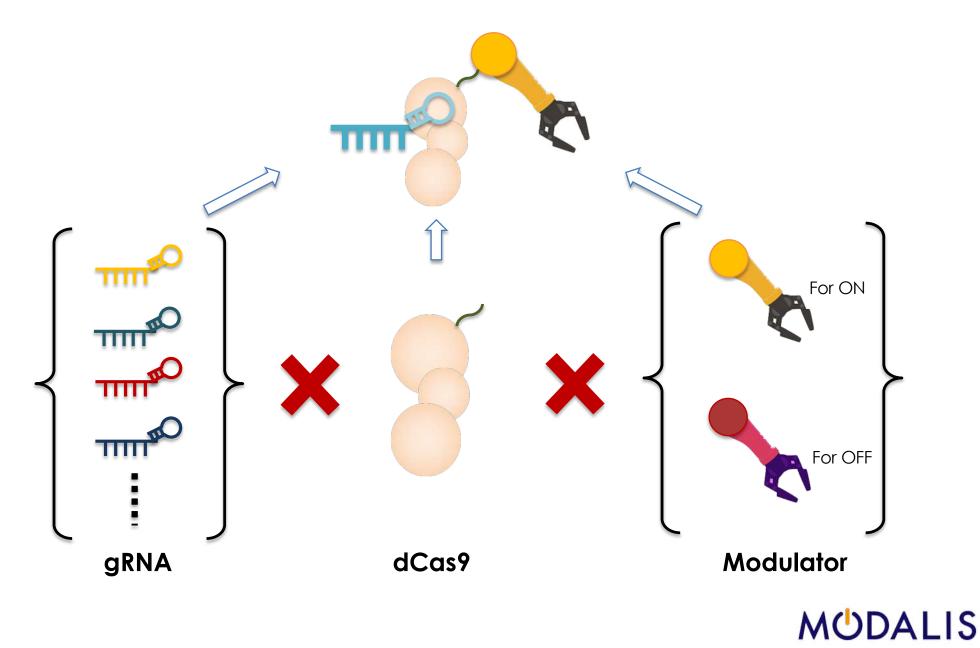


Source : Google Trends Note: Normalized by max of iPS at Oct 2012 as 100

Our Features and Strong points : Mechanism of CRISPR-GNDM


Non-cleaving CRISPR = CRISPR-GNDM® Enables treatment of genetic disorders by controlling ON/OFF switch

CRISPR-GNDM (Guide Nucleotide-Directed Modulation) platform

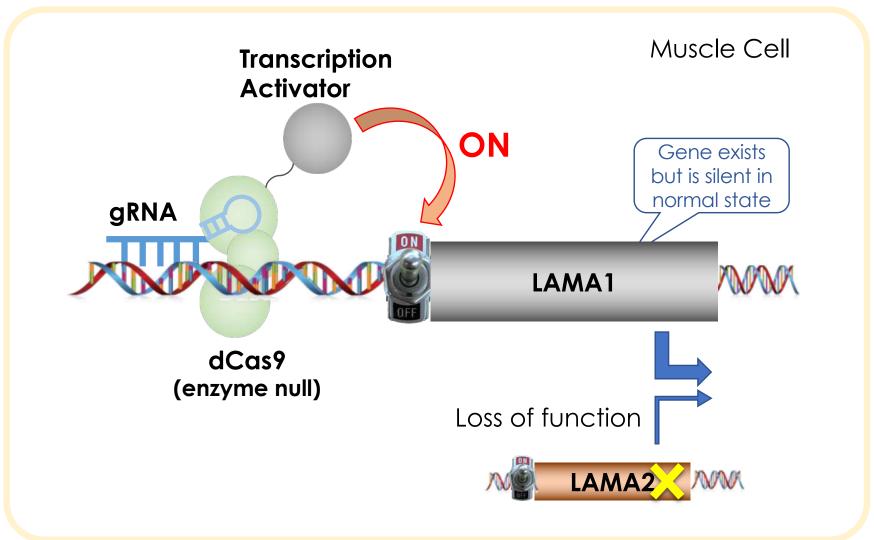


Our Features and Strong points : How to delivery of CRISPR-GNDM

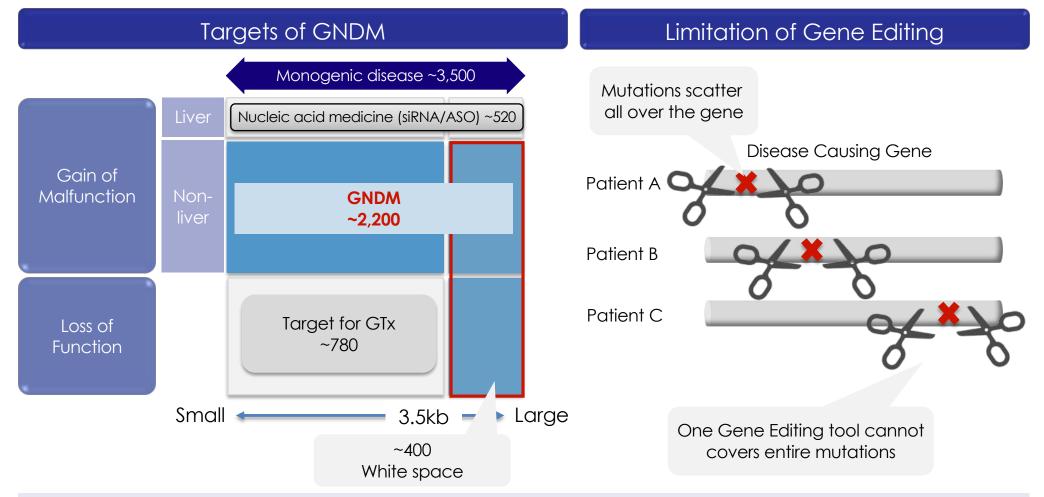
Delivery of CRISPR-GNDM® to target Use AAV vector to deliver GNDM to target cell

Scalability of GNDM gRNA is the only variable which is unique for each target. Other components are off-the-shelf to assemble.

MDC1A Severe muscular dystrophy caused by loss of function mutation in LAMA2 gene


- Frequency: 1 in 30,000*
- Inheritance Pattern: Autosomal Recessive
- Early onset: apparent at birth or within the first few months of life
- Symptoms:
 - Severe muscle weakness;
 - Lack of muscle tone (hypotonia);
 - Little spontaneous movement;
 - Joint deformities (contractures);
 - Heart problems and seizures.
- Life expectancy:
 - Because of the serious health problems that occur in this form of the disorder, many affected individuals **do not survive past adolescence.**
- Genetic cause: LAMA2 mutation

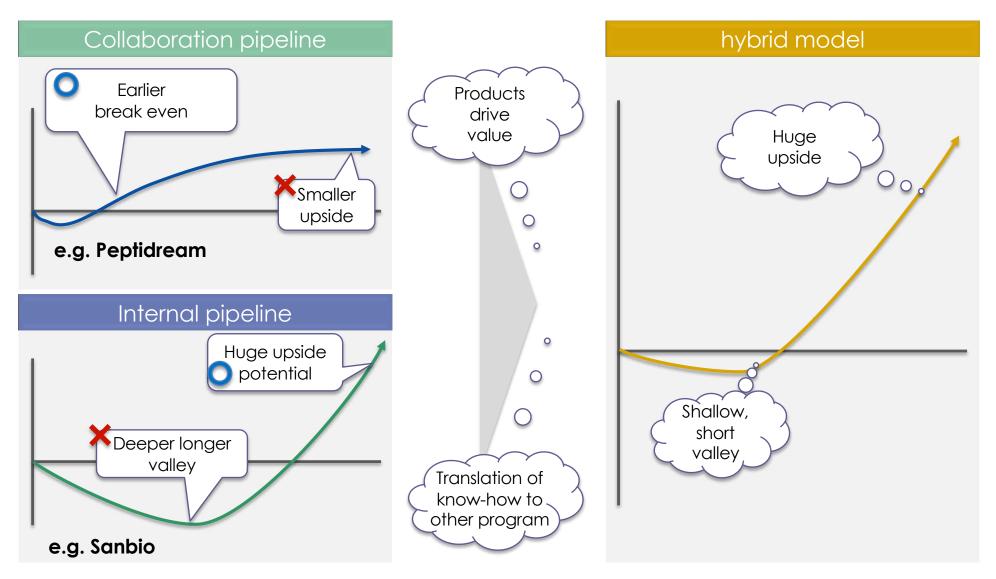
MDC1A: merosin- deficient congenital muscular dystrophy type 1A *Orphanet


How GNDM cure MDC1A GNDM upregulation of LAMA1 gene in skeletal muscle

CRISPR-GNDM targeting LAMA1

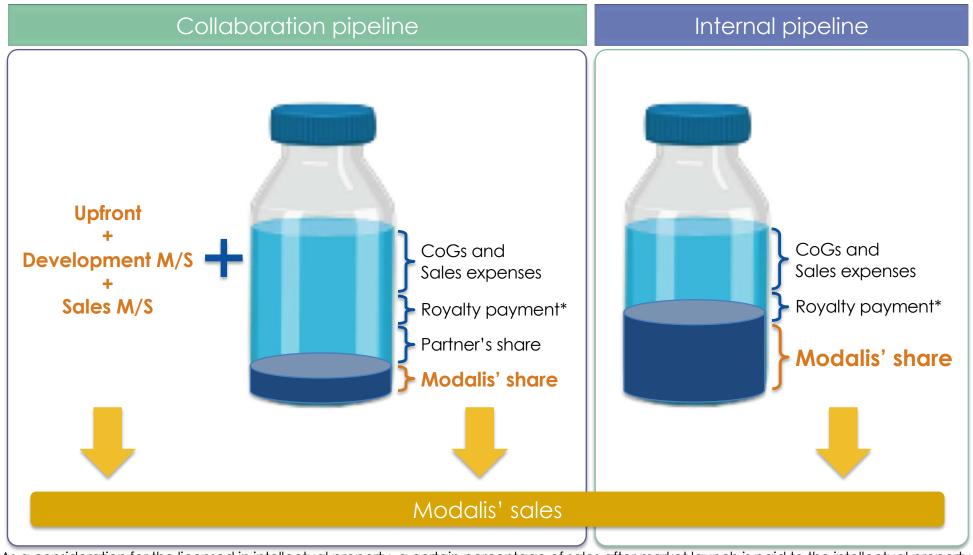
Target diseases of GNDM GNDM enable us to reach differentiated genetic targets

GNDM enable us to approach differentiated targets which cannot be reached by other gene therapies or gene editing

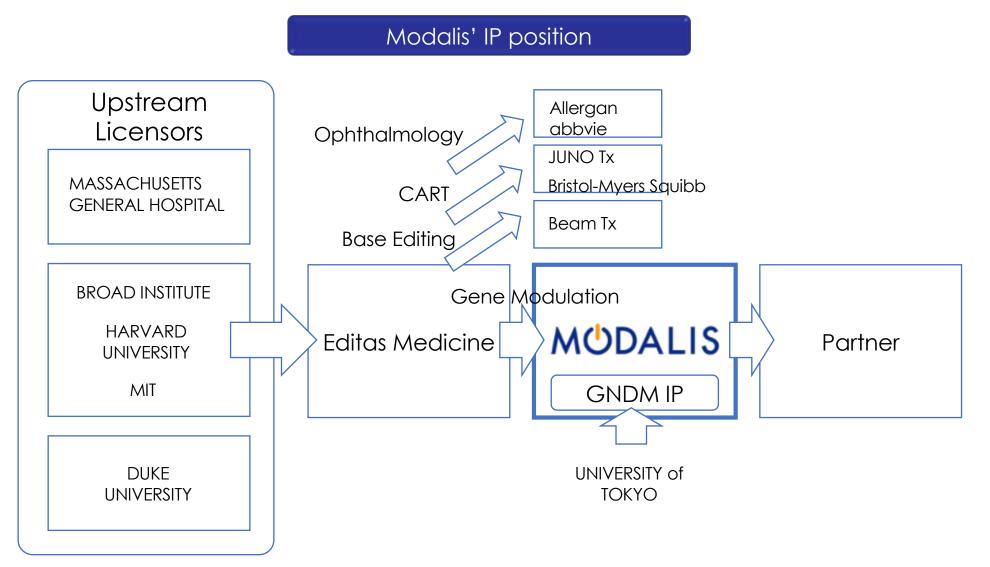

Source: Discovery Medicine, Science 2019

Business Model

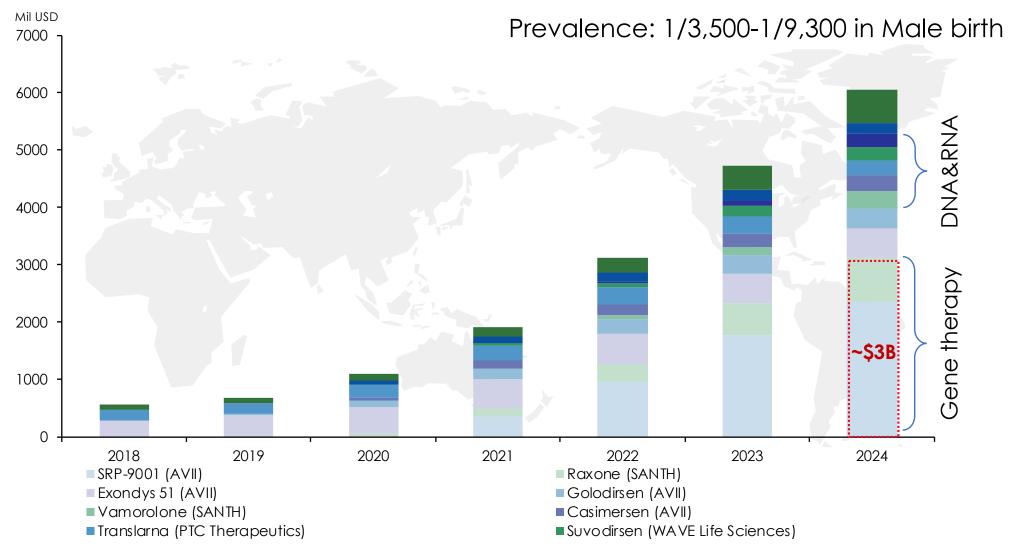
Modalis is pursuing a hybrid model


Combination of upside from internal pipelines and earlier cash stream from collaboration pipelines

* The above is only an image and does not suggest or guarantee our future performance.


Risk - profit share model

While collaboration model brings earlier cash, internal pipeline has higher profit with higher risks


*: As a consideration for the licensed in intellectual property, a certain percentage of sales after market launch is paid to the intellectual property holding organization.

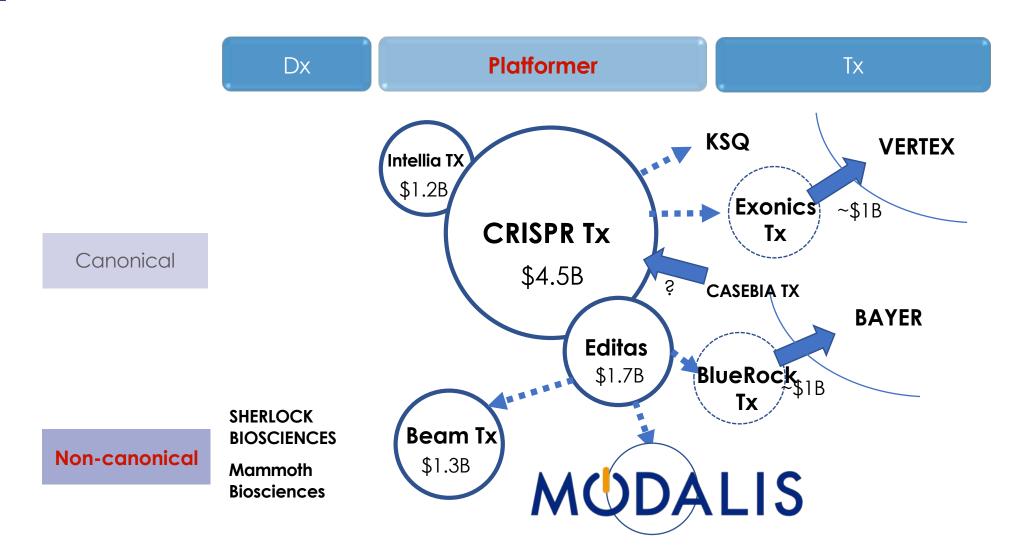
IP position Established IP with foundational CIRPSR IP from Broad and engineered Cas9 from Univ of Tokyo

Source : disclosed information by each company

DMD market Expected to be reaching \$3B in 2024 driven by GTx

Source : Evaluate Ltd and Orphanet. 2019 to 2024 are predicted sales DMD: Duchenne muscular dystrophy

Deal of CRISPR companies 3 editing companies have formed mega deal before entered into clinical trials

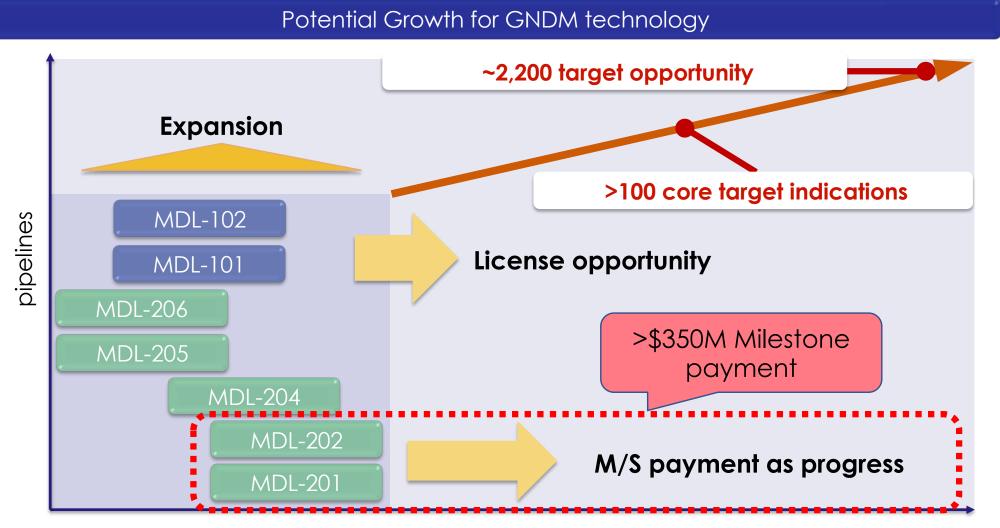

Partner Collaboration		Detail	Total deal size*			
JUNO Tx Editas Medicine Bristol-Myers Squil		3 target in CART quibb	Upfront <mark>\$25M</mark> + R&D funding <mark>\$22M</mark> + M/S \$700M	\$747M		
Market Cap [#] : \$1.7B (EDIT)	Allergan abbvie	5 targets in Ophthalmology Incl. LCA10	U/F \$90M + MS · royalty			
Intellia Tx	NOVARTIS	CART and HSC	<pre>\$10M (U/F) + \$20M (tech transfer) + \$20M (R&D funding) + \$230.3M (M/S / 1 product) + ~15% (royalty) \$13M Equity investment</pre>	\$293.3M		
			& 14 DDS patent license from Novartis			
Market Cap [#] : <mark>\$1.2B</mark> (NTLA)	REGENERON	Option for 10 liver target	<pre>\$75M (U/F) + \$135M (M/S / 1 product) + ~10% (royalty) \$50M Equity investment@ IPO</pre>	\$ 260M		
	VERTEX	Option to 6 targets	\$75M (U/F) + \$30M (IP milestone) + \$420M (MS / 1 target) + royalty	\$ 525M		
CRISPR Tx	BAYER	٧L	50:50 stake & \$70M Equity investment			
Markat Can#+ \$4.52		Hematology	BAYER to CASEBIA \$45M(U/F) + \$255M(R&D funding)	\$ 405M		
Market Cap [#] : <mark>\$4.5B</mark> (CRSP)	CASEBIA	CASEBIA Blindness Heart	CASEBIAからCRISPR \$15M(U/F)、\$20M(when get IP)			

Source: S1 data and press release of each company. # As of end Jun 24th * Aggregated amount of U/F, milestones and equity investment

MUDALIS

Major players in CRISPR field

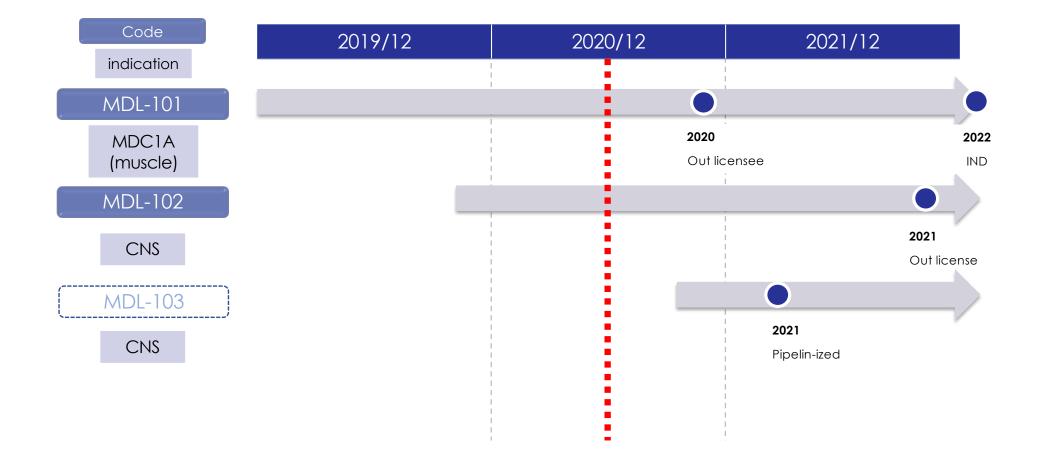
Modalis established unique position in CRISPR companies, most of which reached >\$1B


Source: stock info. The figures represent market cap as of Jun 24th or value at the time of acquisition. Dotted circle represent acquired companies

Growth Strategy



Growth Strategy opportunity expands two dimensionally


Stage of development

Collaboration pipeline Achieved and expected Milestone events*

* Scheduled milestone events are informational in the future and subject to change

Internal pipeline Expected milestones by end 2021*

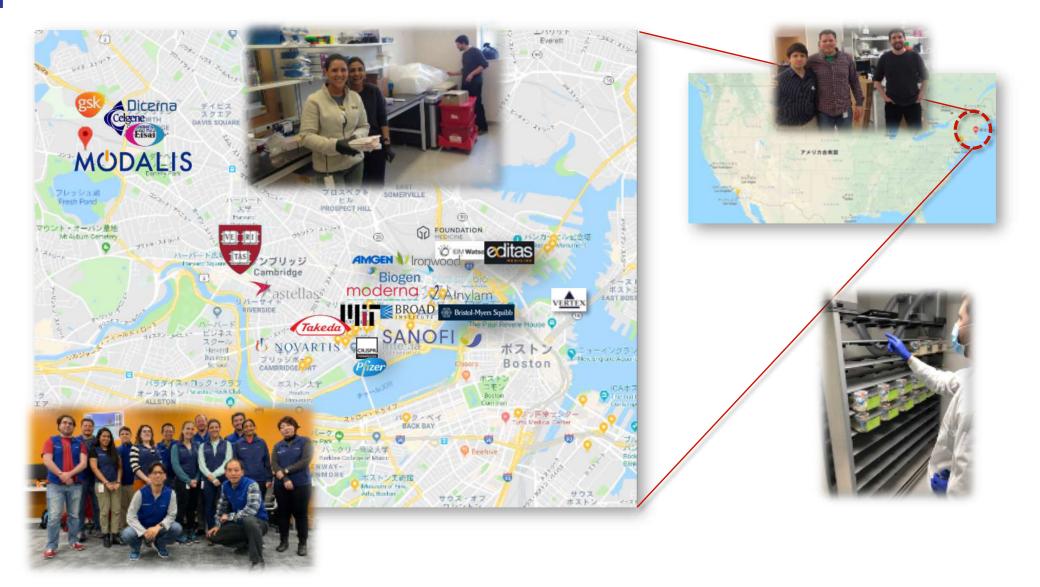
* Scheduled milestone events are informational in the future and subject to change

Advantages of GNDM in our business

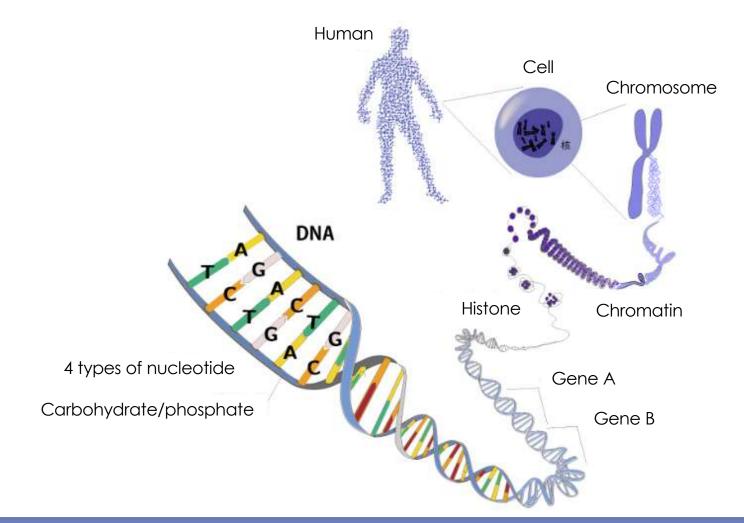
- Unlimited upside potential
 - >100s potential indication that GNDM is superior to the other technologies
- Bye-bye, one-in-millions
 - Predictable result and timeline based on experience and streamlined research process
- Scalable
 - Experience in one indication is easily transplanted into the other

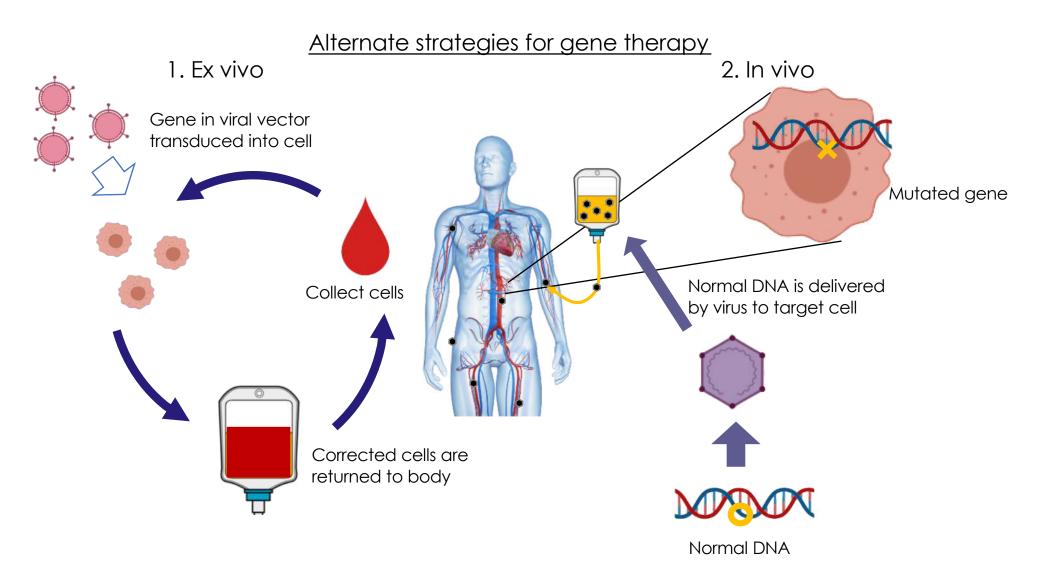
Landscape of Listed Bio-ventures in Japan First listing with CRISPR platform company

		Drugs / Therapies						
		Others	Small molecule	Protein / Peptide	Antibody	Regenerative / cellular medicine	Gene therapy / nucleic acid medicine	Gene Editing (CRISPR)
	Drug discovery (Platformer)		(4565) Sosei Group Mkt cap : 1,289B Yen	(4587) Pepti Dro Mkt cap : 6,345B				(4883) Modalis
Business Model	Drug discovery (Products)	Nano Carrier MED RX Oncolys BioPharma	CARNA BIOSCIENCES MEDICINOVA RaQualia CanBas DWTI Kubota Delta-Fly Pharma GNI SymBio Solasia	JCR OTS 3D MATRIX BrightPath Bio StemRIM Gene Techno Science	CHIOME Bioscience	SanBio Healios J-TEC CellSeed Takara Blo	Anges RIBOMIC	
	analysis/contract processing services	SNBL HMT Phoenix Bio				Iakara Bio MEDI NET REPROCELL CellSource		


Source: Prepared by Modalis Tx based on information disclosed by bio ventures listed from 1990 to date. The above chart classifies drugs and therapies based on main pipelines. Market cap is as of Jun 24th

Appendix


Operated in Cambridge MA The center of life-science


Genome, Gene, DNA

Gene is a meaningful unit (program) consisting of DNA (code) within the genome (system)

All cells in the body have the same DNA in all cell types

Delivery of gene therapy Use of viral vector to deliver DNA to cell ex vivo or in vivo

Comparison of GTx technologies

	Gene Therapy (broad sense)					
	GTx (narrow sense)			Gene Editing		
Basal technology	-	ZFN	TALEN	CRISPR	CRISPR	CRISPR
Molecule design	-	Complicated	Complicated	Simple	Simple	Simple
Mode	Gene Transduction	Gene Editing Gene modulation	Gene Editing	Gene Editing	Base Editing	Gene modulation
Delivery method	AAV/LNP	AAV	AAV	AAV/LNP	AAV/LNP	AAV
DNA cleaving	Yes	Yes	Yes	Yes	Νο	No
Max size of target gene	<~3.5kb	No limit	No limit	No limit	No limit	No limit
Companies	AUDENTES Tx Spark Tx AveXis SAREPTA Tx REGENXBIO	Sangamo Tx	-	Editas Medicine Intellia Tx CRISPR Tx	Beam Tx	MODALIS

Source: Modalis by public information

Glossary (1/2)

Page	Word	Explanation			
P9	CNS	Central Nervous System comprises the brain and spinal cord.			
P9	MDC1A	A group of neuromuscular disorders that begin at birth or infancy and are characterized mainly by hypotonia, muscle weakness and muscle wasting. Caused by mutations in the LAMA2 gene. Inherited in an autosomal recessive manner.			
P21	GTx	Gene Therapy			
P24	ZFN (Zinc Finger)	Small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) which stabilize the structure. Engineered ZF arrays fused to a DNA cleavage domain (usually the cleavage domain of FokI) are used as a gene editing tool.			
P24	TALEN	Transcription Activator-Like Effector Nucleases: restriction enzymes that can be engineered to cut specific sequences of DNA. They are made by fusing a TAL effector DNA-binding domain to a DNA cleavage domain.			
P24	gRNA (guide RNA)	18-22nt RNA which is complementary (forming A-T or G–C pairs) and bind to target DNA sequence			
P26	dCas9	Form of Cas9 enzyme which lacks activity to cut DNA			
P27	AAV vector	Adeno-associated virus (AAV) is a small virus that infects humans and some primate species. AAV is not currently known to cause disease and is used for delivery of gene therapy tools to cells for therapeutics.			

Glossary (2/2)

Page	Word	Explanation
P31	Gain of Malfunction	A type of mutation in which the altered gene product possesses a harmful molecular function or a harmful pattern of gene expression. Gain-of-function mutations are almost always Dominant or Semi-dominant
P31	Loss of function	Also known as inactivating mutations, which result in the gene product having less or no function
P31	siRNA	Small interfering RNA (siRNA) is a class of double-stranded RNA molecules, 20-25 base pairs in length, and operating within the RNA interference (RNAi) pathway. They interfere with the expression of specific genes with complementary nucleotide sequences by degrading mRNA after transcription thus preventing translation.
P31	ASO	A synthetic strand of nucleic acid (DNA, RNA or a chemical analogue) that binds to the messenger RNA (mRNA) produced by that gene and inactivates it, effectively turning that gene "off".
P36	Duchenne muscular dystrophy(DMD)	Genetic disorder characterized by progressive muscle degeneration and weakness. One of nine types of muscular dystrophy. DMD is caused by an absence of dystrophin, a protein that helps keep muscle cells intact.
P47	Histone	Proteins found in eukaryotic cell nuclei that package and order the DNA into structural units.
P47	Chromatin	Complex of DNA and protein found in eukaryotic cells. Primary function is packaging very long DNA molecules into a more compact, denser form.
P48	Ex vivo / In vivo	Ex vivo: transduction of the therapeutic gene into patient-derived somatic cells, followed by subsequent transplantation back into the patient. In vivo: delivery of cargo (e.g. virus vector) and therapeutic components to body